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Generation of tertiary carbinols in a diastereoselective manner Scheme 1.

remains an important synthetic task in organic chemisityhile

the design of catalytic enantioselective reactions is garnering the
majority of recent attention, broadly applicable, catalytic, diaste-

reoselective reactions remain a significant objective. This is

particularly true for compounds with nearby stereocenters where
frequent use of expensive external chiral sources is not ideal.
Continuing our research efforts with thes(trimethylsilyl)silyl
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(TTMSS or super silyl group) and its sequential aldol (SA)

reactions, which were shown to proceed with unprecedented 1 4 90% yield
reactivity and diastereoselectivity, we initially explored the use of 99/1 Felkin major
ketone derived silyl enol ethers for the simple aldol reaction. Starting  oTT™mss o O OTTMSS
with the acetone-derived super silyl enol etfiewe looked at the . U HNTf, (0.1 mol%)

diastereoselective aldol reaction with chiral aldehy&eand 4 H/ CH,Cl,, -78 °C, 5 min
(Scheme 1). The reaction proceeded giving ket@eesd5 in high 7

yield with high Felkin selectivity even in the case of 2-methyl- 92% yield
butyraldehyde, showcasing this enol ether’s ability to differentiate 95/5 anti/syn

methyl and ethyl group3The super silyl enol ether of cyclohex- "TTMSS ~TMSgSi-

anone 6) was reacted witfiso-butyraldehyde giving in high yield
with unprecedented high anti selectivity for this type of Mukaiyama
aldol reaction. This is in stark contrast to the TBS- and TMS-enol
ethers of cyclohexanone, which have been reported to give little to
no selectivity in aldol reactions with a variety of catalysts.
Pleased with these initial aldol results, we wondered if these
reagents could be used for SA-reactions such as subsequent additio
of organometallics, that is, Grignards, in a one-pot SA-Grignard
protocol to generate tertiary carbinols. While a plethora of literature Scheme 2. SA-Grignard Reaction to Generate Distinct
reports and in-depth studies exist regarding the diastereoselectivityDiastereomers

excellent diastereoselectivity giving tlaati product as the major
diastereomef8 This observed sense of stereoinduction results from
nucleophilic attack on theppositesr-face of the carbonyl to our
previously reported SA-Grignard reactions utilizing the acetaldehyde
super silyl enol ethef The proposed reason for this distinction
was investigated with DFT calculations and will be discussed
Qubsequenﬂy

of additions tg3-oxygenated aldehydésignificantly fewer reports HNTf, PhMgBr HO, Me OTTMSS
; K OTTMSS O (0.1 mol%) (2 eq)
can be found for the corresponding simpl@xygenated ketones L U pn /k)\rPh
(aside from hydrogenation/reduction reactioh3)e majority of 1 A _753'0'205'26““ -78°C-n
these reports involve &-hydroxy ketone and are proposed to ' 85%y|eld
undergo cyclic, six-membered transition states involving a Lewis HNTH MeMgBr 95f5 dr
acid catalyst or the metal from the organometallic species. While oTTMSS O ©1mors)  (2eq) HO, Me OTTMSS
there is a report concerning syn selectivity for the methyl and butyl Ph + Ph CHCly  78°C-1t >\/'\r
addition to3-TBSoxy protected ketonég sparse examples exist 9 4 -78 °C, 5 min MgBr !
for this type of diastereoselective reaction. This may be due to two 731/‘}9"§r'd
main factors: (1) ketones are typically less selective and less
. - : : HNT#, Ph OHOTTMSS
reactive than aldehydes in many stereoselective reactions, and (2) OTTMSS O (01 mors) (2eq)
stereoselectivity induced bg-chirality is often lower than that o L U FD /©)\/H/
induced bya-chirality. We hoped that the superior diastereoselec- 9 _7;3%2‘05'2;1“” e 720 vield
tivity imposed by the super silyl group would also allow for a 80/20 dr
successful sequential reactions of in situ formfeduper siloxy
HNTf, PhMgBr

ketones. OTTMSS O (0.1 mol%) (2eq) HO, Ph OTTMSS

Using a simple one-pot SA-reaction protocblunderwent the 4F-CeHi7 . ' oo v
aldol reaction with4 initiated by 0.1 mol % of HNT, and phenyl 12 78°C. 5min .

magnesium bromide was subsequently added dropwis@&rC
(Scheme 2). The produ@ was formed with good yield and

70% yield
80/20 dr

Realizing that by simple substrate choice distinct diastereomers

TThe U f Chi
i Ureoraty of E e could be generated0 was formed with high selectivity by simply

* Aichi University of Education.
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Table 1. SA—Grignard Reaction

OTTMSS o HNTf, (0.1 mol%)  Grignard (2 eq)
+ [ product
f"J%. kne CHyCly, 78°C-1t
- -78°C. S min @ = starting aldshyde component
AR'=Me(1) R2 = £Pr, CgHyq ® = SEE component
R'=(CHz)4(8)  CH(Me)Phor @ = Grignard Reagent component
R'=Ph(g) CH{Me)Et
R'=pF-Ph(12)
Mg OHOTTMSS Mg OHOTTMSS Me OH OTTMSS
15 16 17
70% yield 80% yield 70% yield
. 95/<5/<5/<5 dr 95/4/<1/<1 dr 95/<5/<5/<5 dr

Me OHOTTMSS Me OHQTTMSS
OH OTTMSS 3 :
| 18 19 20
68% yield 77% yield 77% yield
85/15 dr 88M2dr _ 85/10/<5/<5 or

P OH OTTMSS Me, ?H OTTMSS

Ph | == “OH OTTMSS
=N -
21 Br 22
68% yield 61% yield MeO 72% yield
78/22dr 89/11dr 80/20 dr

switching to the super silyl enol ether of acetophenddeahd
sequentially adding methyl Grignard (Scheme 2). Intrigued by the
possibility of accessing stereodefined isomers with similarly sized
substituents at the quaternary carbon, we Bead added-F-
phenyl Grignard obtaining the expected anti isodtkin good yield

and selectivity (Scheme 2)Using the super silyl enol ether of
4'-F-acetophenond @) and adding phenyl Grignard did indeed give
the expected diastereontE3 in similar yield and selectivity. These
examples clearly indicate the control of the transition state exhibited
by the super siloxy substituent in these open-clfaguper siloxy

ketones as well as the ability to generate the desired diastereomer:

by the simple choice of silyl enol ether and Grignard.

The generality of this one-pot reaction was shown by the success

of a variety of super silyl enol ethers, aldehydes, and Grignard
reagents (Table 1). The cyclohexanone super silyl enol éthers
used, followed by the addition of the methyl Grignard to givig
containing three contiguous stereocenters with the selectivity of
the Grignard addition dictated by the stereocenter atxtpesition
of the keton€.Use of vinyl Grignards worked well giving products
16, 17, and18 with good diastereoselectivifyThe use of the propyl
Grignard succeeded in this reaction giving produt@sand 20.
Importantly, formation ofl7 and 20 showcases the super silyl
groups powerful control of diastereoselection by first differentiating
methyl and ethyl groups to give large excess of the Felkin isomer
and by second stereoselectively controlling the Grignard addition
via its presence in thg-position. Use of benzylmagesium chloride
gave the lowest selectivity producirgll with a moderate 78/22
ratio? A variety of aryl Grignards worked very well in this reaction
producing bisaryl tertiary carbino®2 and23 with good selectivity.
Product22, containing the valuable pyridine moiety was generated
by in situ preparation of the heteroaryl Grignard formed by
Knochel's powerfuliPrMgCl 2,6-dibromopyridine exchange reac-
tion.10

Owing to our past success with the sequential atéddiol (SA—
A) reaction?® we decided to combine this method with our SA
Grignard reaction for a 4-component SA—Grignard protocol

Scheme 3. 4-Component SA—A—Grignard Reactions
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in moderate yield with high diastereoselectivity. The same protocol
was used withl2 as the second silyl enol ether and phenylmag-
nesium bromide was finally added to gi2® in moderate yield
and selectivity.

DFT calculations at the B3LYP/6-3%1G(d,p)//B3LYP/6-31G-
(d) level were done to address the aforementioned diastereoselec-
tivities.1* Where we had previously observed syn selectivity (SA-
Grignard reaction witl$-super siloxy aldehydes), we are now seeing
anti selectivity (SA-Grignard reaction wigfrsuper siloxy ketones).
The calculations assigned a reactant weak complex (RWC) as the
relative zero point. The transition state (TS) energy was then
calculated as well as the product energy. The vinyl Grignard dimer
was used in the calculations due to classic experimfieatswell
as in new calculations showing its likelihood as the reactive
species? This was done for both syn and anti reaction courses.
The calculations showed that the vinyl Grignard addition to the
[-super siloxy aldehyde favored the syn pathway by 0.3 kcal/mol
in the TS leading to the experimentally observed syn isomer (Figure

ﬁ). Calculations for thes-super siloxy methyl ketone showed a

fad —
%'né‘ CE,W
o wﬁe - llu— OTTMSS
RWGC Product

anti aldehyde TS
(disfavored)

g

syn aldehdye TS

13.5 keal/'mol activation energy 133 keal/'mol activation energy

Figure 1. Structures of optimized transition states (TS). Calculated energies
(kcal/mol) determined via stationary-point calculations of reactant weak
complex (RWC), TS and product in vinyl Grignard addition fesuper
siloxy aldehyde. Yellow= Si, gray= C, white=H, red= O, greer~ Cl,
purple= Mg; blue bond indicates forming-€C bond in TS.

preference for the observed anti isomer formation by 2.6 kcal/mol
in the TS (Figure 2). The major reasons for the dissimilarity in TS

(Scheme 3). The aldol reaction of the acetaldehyde silyl enol ether energies for the latter is the presence of significant steric repulsion

was followed by a second aldol reaction w24, and subsequent
addition of methyl Grignard to give the 4-component prod2fst

between the ketone’s methyl group aftdsopropyl group in the
syn TS. The anti TS does not suffer from this interaction and is
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